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Abstract
In the production of US agricultural official statistics, certain inequality and benchmarking con-

straints must be satisfied. For example, available administrative data provide an accurate lower
bound for the county-level estimates of planted acres, produced by the US Department of Agri-
culture’s (USDA) National Agricultural Statistics Services (NASS). In addition, the county-level
estimates within a state need to add to the state-level estimates. A sub-area hierarchical Bayesian
model with inequality constraints to produce county-level estimates that satisfy these important
relationships is discussed, along with associated measures of uncertainty. This model combines
the County Agricultural Production Survey (CAPS) data with administrative data. Inequality con-
straints add complexity to fitting the model and present a computational challenge to a full Bayesian
approach, so improved performance is needed to justify the additional computational burden. To
evaluate the inclusion of these constraints, the models with and without inequality constraints were
compared using 2014 corn planted acres estimates for two states. The performance of the model
with inequality constraints illustrates the improvement of county-level estimates in accuracy and
precision while preserving required relationships.

Key Words: Administrative Data, Agricultural Statistics, Bayesian Diagnostic, Bench-
marking, Small Area Estimation, Survey Data

1. Introduction

The National Agricultural Statistics Service (NASS), the primary statistical data collection
agency within the U.S. Department of Agriculture (USDA), conducts the County Agri-
cultural Production Survey (CAPS) annually. CAPS provides county-level estimates for
crops by commodity: planted acres, harvested acres, yield and production. The current
method of producing these official estimates is an expert assessment conducted by NASS’s
Agricultural Statistics Board (ASB), which incorporates multiple sources of information.
The information includes the CAPS estimates and administrative data whenever it is avail-
able. These county-level estimates are key indicators to farmers, ranchers and a number
of federal and state agencies for decision making. Two USDA agencies, the Farm Service
Agency (FSA) and the Risk Management Agency (RMA), consider the estimates as part of
their processes for distributing farm subsidies and insurance, respectively.

In the current process of setting official statistics, the ASB analyzes the survey esti-
mates and integrates them with multiple data sources. To arrive at official estimates, the
ASB relies on standard processes, multiple data sources, historical performance of these
sources, and expert judgment. In a statistical sense, the ASB results are not reproducible
and measures of uncertainty cannot be produced. Given the importance of the crops county
estimates program, NASS engaged a panel of experts under the National Academies of
Sciences, Engineering, and Medicine (NASEM) for guidance and recommendations on
implementing small area models for integrating multiple sources of information to provide
more precise county-level crop estimates with measures of uncertainty.
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‡USDA National Agricultural Statistics Service.
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In recent years, small area models have gained increased attention by academic re-
searchers and government agencies. The small area estimation models can “borrow” strength
from related areas across space and/or time or through auxiliary information to provide “in-
direct” but reliable estimates for small areas while also increasing the precision. One chal-
lenge of producing a model-based approach is the ability to provide reliable and coherent
estimates that satisfy important relationships nested among estimates and administrative
data. The NASS county-level official estimates of planted acres should “cover” the corre-
sponding available administrative data while also satisfying benchmarking constraints so
that county-level estimates add up to the state-level estimates. In this paper, incorporating
constraints of the planted acres estimates into small area models are applied and hierar-
chical Bayesian models with constraints for small area estimation are discussed. Before
NASS can adopt a model-based approach to producing crops county estimates, the model
must incorporate all known relationships. Publishing model-based estimates will lead to
improved reproducibility and transparency.

Two major types of small area models, area-level and unit-level models, have been
developed based on both frequentist and Bayesian methods. Pfeffermann (2013) and Rao
and Malina (2015) provide a comprehensive overview of the development, methods and
application of small area estimation including various types of area-level and unit-level
models. For continuous responses, the first and most common model would be the Fay-
Herriot model (Fay and Herriot, 1979) in small area estimation. It is an area-level model
based on a “Normal-Normal-Linear” assumption. That is, the direct estimates and area-
level random effects are both assumed to follow normal distribution and a linear regression
function relates the true estimates of interest to covariates. The popular unit-level model,
nested-error regression (NER) model, is proposed by Battese, Harter and Fuller (1988)
when data are available on the individual sampled units. The NER model is also developed
under the normality assumption.

Recent studies and papers related to the NASS crops county estimates program have
shown that the hierarchical Bayesian small area models can incorporate auxiliary sources
of data to improve county-level survey estimation of crop totals with measures of uncer-
tainty. Battese, Harter and Fuller (1988) introduced the unit-level models for small area
estimation based on nested error linear regression. They combined survey indications with
satellite data. Erciulescu, Cruze and Nandram (2019) proposed and implemented a dou-
ble shrinkage hierarchical Bayesian sub-area level model to provide the acreage estimates
with associated measures of uncertainty. The paper discussed the results when integrat-
ing different data sources and showed that the county-level model-based acreage estimates
decreased the coefficients of variance relative to the survey ones. Erciulescu, Cruze and
Nandram (2020) discussed the challenges of missing data, either survey responses or ad-
ministrative data, when fitting the hierarchical Bayesian sub-area level model to obtain the
crops total estimates for the whole nation. In these two papers, the state-to-county bench-
marking constraint is handled.

However, the inequality constraint problems have not been addressed in the aforemen-
tioned literature. Cruze et al. (2019) identified these constraints among estimates and
administrative data as a necessity. Nandram, Cruze and Erciulescu (2020) addressed the in-
equality constraint problem and proposed several hierarchical Bayesian models for NASS
crops county-level planted estimates. They discuss the methodologies of fitting constrained
models and provide a simulation study to show the performance of all models.

In this paper, the models with inequality constraints by Nandram, Cruze and Erciulescu
(2020) are applied to 2014 NASS CAPS data. The challenges for providing constrained
estimates of planted acres in small area agricultural models are discussed. In Section 2,
input data sources and some particular needs of the NASS crops county estimates for total
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planted acres are presented. Section 3 presents the hierarchical Bayesian models with in-
equality constraints to produce reliable and coherent county-level estimates and associated
measures of uncertainty. The external ratio benchmarking is applied to the county-level
estimates so that they sum to state targets. The results are contrasted with those obtained
from unconstrained models. In Section 4, a case study based on two different states shows
the model-based estimation results and highlights the different performances of the con-
strained models and the unconstrained models. Conclusions and future work are presented
in Section 5.

2. Data Sources and Requirements

2.1 Survey Data

Although NASS has been producing official county-level crop inventories since 1917, it
was in 2011 that NASS completely implemented the large-scale probability survey, CAPS,
to provide county-level official estimates for many principle small grains and row crops
in several states. In 2012, CAPS was implemented in all eligible states. The list of crops
and states in CAPS may change year to year depending on the requirement of coverage
for federally mandated program crops and others. Figure 1 shows the 2019 CAPS states.
The row crops (e.g. corn, soybeans) CAPS was conducted in 41 states shown in blue and
orange. The small grains (e.g. barley, oats) CAPS was conducted in 32 states shown in
blue and light yellow. All other states (shown in red) were not included in 2019 CAPS.

Figure 1: 2019 row crops and small grains CAPS states

As discussed in the introduction, the smallest area of CAPS is the county. Historically,
NASS has also produced estimates for an intermediate domain called the agricultural statis-
tics district (ASD). Each ASD is comprised of contiguous counties within the state. Both
county-level and ASD level survey estimates and associated variance estimates are avail-
able in CAPS summary. The state-level estimates of planted acres are published before
the completion of data collection for the CAPS. These estimates provide the benchmarking
state targets for the county-level estimates to be published later.

2.2 Auxiliary Data

NASS obtains auxiliary sources of information on crop acres from FSA and RMA. Both
agencies have farmer-reported administrative data on planted acres. FSA programs are
popular but not compulsory. Farmers who participate in FSA programs certify the acres
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planted by crop type. However, the participation rates vary by state. For example, for corn
commodity, the participation rates are higher in the corn-belt states than some of the other
states. Because the data are certified by farmers, the FSA data on planted acres serve as the
lower bound of NASS published statistics of planted acres.

RMA receives administrative data on planted acres through independent crop insurance
agents whenever farmers file claims that are associated with these programs. The partic-
ipation rates of RMA vary by state and commodity. Farmers may not participate in the
crop insurance program or they may not insure all crop commodities grown. Therefore,
NASS treats the RMA administrative data on planted acres as a lower bound on the planted
acreage within each county.

Because NASS treats both FSA and RMA data as the lower bounds of the county-level
planted acreage estimates, the definition of the lower bound in the constrained models is the
maximum of both sources of administrative data. That is, where FSA and RMA acreages
may differ, the larger is taken as a lower bound, and the smaller is satisfied as a result.

2.3 Important relationships for planted acres

In the production of the official statistics for total acres reported by NASS, certain in-
equality and benchmarking constraints should be satisfied. NASS’s official estimates of
planted acres should “cover” corresponding available administrative data: FSA and RMA
planted acreage data within any given geographic boundary, such as the US, a state, and
a county. The relationship of NASS official statistics and FSA administrative data of total
planted acreage for corn at US level from 2012 to 2019 is displayed in Figure 2 (repro-
duced from USDA, 2019). The final planted and failed acreage reported to FSA, final
planted acreage from NASS, and the difference between FSA reported acreage and the
NASS planted acreage for corn are displayed. The bars show that the differences between
NASS official estimates and FSA data are all positive at the US level. NASS currently uses
the top-down method to produce official county-level estimates that satisfy the county-
state benchmarking constraint. However, the county-level survey estimates of the planted

Figure 2: The US-level planted acreage estimates of corn for NASS and FSA

acreage do not always satisfy the constraints.
Figure 3 indicates that the points in plot of the survey estimates versus the FSA data

are scattered around the 45 degree line. Some of the survey estimates are one or two
standard deviations below the corresponding FSA or RMA data. This introduces difficulties
for model estimates to preserve the relationships for the basic small area models without
constraints. However, the inequality constraints must be incorporated into the model so
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the all known relationships are satisfied at all levels before NASS can rely on model-based
estimates as the foundation for the final official estimates.

Figure 3: The county-level planted acreage estimates of 2014 corn for CAPS and FSA in
all eligible counties

3. Models

Bayesian area-level and sub-area level models are popular in small area estimation. Models
with constraints are considered based on the original small area models (Rao and Molina
2015; Erciulescu, Cruze and Nandram, 2020). In this section, models, with and without
constraints, are presented and applied in a case study of 2014 corn data. The area-level
model without inequality constraints is first introduced by Fay and Herriot (1979), where
an area represents a county. The sub-area level models without inequality constraints are
discussed by Fuller and Goyeneche (1998) and Torabi and Rao (2014) as an extension of
FH model. In the sub-area level models, an area is an ASD and a subarea is a county.
Nandram, Cruze and Erciulescu (2020) propose and discuss both area and sub-area level
models to address the inequality problems into the models.

3.1 Models without Constraints

Erciulescu, Cruze and Nandram (2020) discuss and apply the hierarchical Bayesian sub-
area model to estimate the number of planted and harvested acres. In their paper, the
county-state benchmarking constraint is handled by ratio benchmarking in the output anal-
ysis but the inequality constraints are not addressed either in the model or in the output
analysis. In this paper, this model is referred as the model without constraints and several
comparisons between this type of model and models with constraints will be presented in
Section 4.

Suppose that there are n counties in one state. Let i = 1, . . . ,m be an index for m
ASDs in the state and j = 1, . . . , ni be an index for the county within the ith ASD. The
survey estimate of planted acreage in county i and district j is denoted by θ̂ij and the

 
1514



associated survey variance is σ̂2
ij . The auxiliary data used in the models are xij , including

an intercept.
The sub-area hierarchical Bayesian model is

θ̂ij |θij , σ̂2
ij
ind∼ N(θij , σ̂

2
ij), i = 1, . . . ,m,

θij |β, σ2
µ
ind∼ N(x′ijβ + νi, σ

2
µ), j = 1, . . . , ni,

νi|σ2
ν
iid∼ N(0, σ2

ν),

where (β, σ2
µ, σ

2
ν) is a set of nuisance parameters. The covariate xij is the maximum of

FSA and RMA administrative data in county i within district j. The county-level FSA and
RMA planted acreage data are highly correlated. To avoid the multicollinearity problem,
we choose to use the maximum of these two data sources. Note that the above sub-area
level model without sub-area level (ASD) effects, νi, reduces to the basic area level FH
model without constraints.

A diffuse prior is adopted to the coefficients β, that is, a multivariate normal prior distri-
bution with fixed and known mean and variance and covariance matrixβ∼MN(β̂, 1000Σ̂β̂).

Here, β̂ are the least squares estimates of β obtained from fitting a simple linear regression
model of the county-level survey estimates on the auxiliary data xij and Σ̂β̂ is the esti-

mated covariance matrix of β̂. The prior distributions for σ2
µ and σ2

ν are Uniform (0, 108)
and Uniform (0, 108). See the discussion in Browne and Draper (2006) and Gelman (2006)
related to the prior of variance components in Bayesian models.

3.2 Models with Constraints

As discussed in Section 2.2, the constraints of the county-level estimates must be larger than
the corresponding FSA and RMA planted acres data and the sum of all estimates within one
state should be equal to the pre-published state-level estimate. In this section, the hierarchi-
cal Bayesian models with inequality constraints by Nandram, Cruze and Erciulescu (2020)
are discussed.

First, the inequality constraints between the model estimates and administrative values
need to be included in the model; that is,

θij ≥ cij , i = 1, . . . ,m; j = 1, . . . , ni, (1)

where the cij are fixed known quantities.
In our application on planted acres, cij = max(FSAij ,RMAij) is defined as the max-

imum value between FSA and RMA corresponding values in the same county. Notice that
in Figure 2, some of the survey estimates are one or two standard deviations below their
corresponding cij , thereby creating some difficulties for the model estimates to do the same.
The benchmarking constraint creates an additional challenge because the state target may
be only slightly larger than the state total from administrative data, c =

∑m
i=1

∑ni
j=1 cij .

This may be a tight condition as discussed in Cruze et al. (2019).
In addition, under NASS’s top-down approach for benchmarking, the benchmarking

constraint needs to be considered as well. In this paper, we are considering Bayesian mod-
els using Markov chain Monte Carlo (MCMC) simulation. After model fitting, a series of
MCMC samples are obtained to construct the posterior summaries of interest. The ratio
benchmarking adjustment method is adopted at the (MCMC) iteration level discussed in
Erciulescu, Cruze and Nandram (2020) in the output analysis to address the county-state
benchmarking constraint. It provides a suitable benchmarking adjustment to ensure consis-
tency of county-level estimates with the state target efficiently.
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Let θBij be the adjusted model estimates for county i and district j, θBij,k be the adjusted
model estimates at the kth iteration, and θij,k be the model estimates at the kth iteration,
k = 1, . . . ,K. Let a be the state-level target.

The arithmetic mean of the MCMC samples is used to construct the point estimates of
interest. After the ratio benchmarking adjustment,

θBij =
1

K

K∑
k=1

θBij,k =
1

K

K∑
k=1

rkθij,k, (2)

where rk is the adjusted ratio at iterate level and the ratio rk is

rk = a×
( m∑
i=1

ni∑
j=1

θij,k

)−1
. (3)

Therefore, the following relationship holds for county-state benchmarking

m∑
i=1

ni∑
j=1

θBij =

m∑
i=1

ni∑
j=1

[ 1

K

K∑
k=1

rkθij,k

]

=

m∑
i=1

ni∑
j=1

[ 1

K

K∑
k=1

a×
( m∑
i′=1

ni∑
j′=1

θi′j′,k

)−1
θij,k

]

= a× 1

K

K∑
k=1

[( m∑
i′=1

ni∑
j′=1

θi′j′,k

)−1
m∑
i=1

ni∑
j=1

θij,k

]
= a.

However, we need to make sure the adjusted final estimate θBij can satisfy the inequality
constraint as well. Given (1), the inequality constraint can be preserved for θij,k in each
kth iteration. If rk ≥ 1 for each k, the following relationship follows from combining (1)
and (2):

θBij =
1

K

K∑
k=1

rkθij,k ≥
1

K

K∑
k=1

θij,k ≥
1

K

K∑
k=1

cij ≥ cij . (4)

Therefore, the inequality constraint rk ≥ 1; that is,
∑m

i=1

∑ni
j=1 θij,k ≤ a is needed

for each kth iteration because when the model estimates are raked up, they will satisfy the
individual county’s inequality constraints.

Based on the discussion above, θij should be drawn subject to the constraints

θij ≥ cij , i = 1, . . . ,m; j = 1, . . . , ni,

m∑
i=1

ni∑
j=1

θij ≤ a (5)

to address both inequality and benchmarking constraints in the models.
According to the constraints (5),

m∑
i=1

ni∑
j=1

cij ≤
m∑
i=1

ni∑
j=1

θij ≤ a.

Therefore, the support of θij given θ
˜
(ij) is

max(cij ,
m∑
i=1

ni∑
j=1

cij −
m∑

i′=1,i′ 6=i

ni∑
j′=1,j′ 6=j

θi′j′) ≤ θij ≤ a−
m∑

i′=1,i′ 6=i

ni∑
j′=1,j′ 6=j

θi′j′ , (6)
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where i = 1, . . . ,m; j = 1, . . . , ni and the lower bound C = (cij)
′ are known and fixed.

To preserve the relationships after fitting the model, the constraint (6) is added to
the FH model and the sub-area model in the priors to get the joint posterior density of
θij , i = 1, . . . ,m; j = 1, . . . , ni. This problem falls under the general heading of con-
straint problems in statistics (e.g. Nandram, Sedransk and Smith 1997).

Therefore, the sub-area hierarchical Bayesian model with constraints is proposed as

θ̂ij |θij , σ̂2
ij
ind∼ N(θij , σ̂

2
ij), j = 1, . . . , ni,

θij |β, δ2 ind∼ N(x′ijβ + νi, σ
2
µ), θij ∈ T ,

νi|σ2
ν
iid∼ N(0, σ2

ν), i = 1, . . . ,m,

where T denotes the support (6) of θij such that both the benchmarking constraint and the
inequality constraints are satisfied simultaneously. (β, σ2

µ, σ
2
ν) is a set of nuisance parame-

ters and xij = (1, xij1, . . . , xijp) is the vector of covariates and the intercept. Note that the
above sub-area level model without sub-area level (ASD) effects, νi, reduces to the area-
level FH model with constraints. A diffuse prior is adopted to the coefficients β, the same
as the prior mentioned in Section 3.1. The non-informative prior distributions for σ2

µ and
σ2
ν are Uniform (0, 1010) and Uniform (0, 1010), respectively.

It is worth noting that the state target should be equal to or greater than the administra-
tive state total, a ≥ c. That is, a =

∑m
i=1

∑ni
j=1 θ

B
ij ≥

∑m
i=1

∑ni
j=1 cij = c. Therefore,

there are feasible solutions to the inequality constraint problem in (5), and a feasible solu-
tion clearly depends on the target and the FSA and RMA values. As discussed in Section
2.2, most of the survey estimates are within two standard deviations of the bounds, but
many of the smaller ones are much further below the bounds. Because of the advantage of
shrinkage estimation in a small-area model, the smaller survey estimates are likely to be
pulled upwards, and this will help to meet the bounds, but it does not solve the problem. If
the model does not incorporate the inequality constraints, the final estimates do not neces-
sarily cover the lower bounds in all cases. The inequality constraints need to be addressed
in the models.

4. Case Study

The four models discussed in Section 3 are compared: the sub-area level model with in-
equality constraint, the area level model with inequality constraint, the sub-area level model
without inequality constraint and the area-level model without inequality constraint. In
addition, all models are fit using administrative data sources of information described in
Section 2.2.

All models produce 2014 CAPS estimates of planted acres for corn in Illinois (IL) and
Ohio (OH). FSA and RMA administrative data in IL usually have very high coverage rates
of the planted acres for corn in each county. But in some specific counties in OH, both
sets of administrative data have relatively low coverage rates for planted acres. The model
performance is evaluated for both scenarios.

As mentioned in Section 2.2, the county-level survey estimates did not automatically
cover all FSA and RMA administrative data. The relationship between survey estimates
and the corresponding lower bounds based on administrative data (the maximum of FSA
and RMA data) is displayed in Figure 4. The plotted pairs of survey estimates and adminis-
trative data are scattered around the 45 degree line. Around 31% of the county-level survey
estimates cover FSA and RMA. About 56% of the survey estimates cover FSA and RMA
for OH.
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Figure 4: The County-level Planted Acreage Estimates of Corn for CAPS data and the
lower bounds in IL and OH

In Section 4.1, a summary of the model fitting process is provided. Section 4.2 includes
the internal checks for all four models. Several diagnostic tools are explored to check the
adequacy of the models. External checks between model estimates, survey estimates and
official statistics from NASS are presented for all models in Section 4.3.

4.1 Model Estimation

All four models are applied to all counties with positive data within one state for which
(θ̂ij , σ̂

2
ij ,xij) are available. In IL, there are 102 counties and 9 ASDs in the CAPS samples

for planted acreage. In OH, there are 88 counties and 9 ASDs.
MCMC simulation method is used to fit all four hierarchical Bayesian models using

R and JAGS (Plummer, 2003). In each model, three chains are run for our MCMC simu-
lation. Each chain contains 50,000 Monte Carlo samples, and the first 15,000 iterates are
discarded as a burn-in to improve the mixing of each chain. After that point, 35,000 further
iterations were produced for each of the three chains. In order to eliminate the correlations
among neighboring iterations, those iterations are thinned by taking a systematic sample
of 1 in every 35 samples. Finally 1,000 MCMC samples in each chain are obtained for
constructing the posterior distributions of all the parameters, the nuisance parameters and
the parameters for the planted acres.

The posterior means (PM) and posterior standard deviations (PSD) for parameters β′ =
(β0, β1) and the variances, σ2

µ and σ2
ν for sub-area level models and σ2

µ for area-level models
for IL and OH, respectively, are displayed in Table 1-4. The signs of the coefficient β1 in
both states are as expected. The administrative data are very significant predictors with a
positive sign for the county-level number of planted acres. For IL and OH, all the β̂1 are
significant among four models but the intercept β̂0 are not significant (the 95% credible
intervals contain zero) in both unconstrained models.
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Model Parameters PM PSD ESS R̂

C Sub Area

β0 -108676.1 56678.4 3000 1.001
β1 0.955 0.364 3000 1.002
σ2
µ 11765649.3 14368379.5 1900 1.012
σ2
ν 3.48E+09 2.76E+09 3000 1.003

NC Sub Area

β0 -818.5 2111.3 3000 1.001
β1 0.884 0.024 3000 1.001
σ2
µ 17356714.6 15844279.3 2100 1.004
σ2
ν 10975427.3 17396487.7 3000 1.001

Table 1: Posterior means (PM), posterior standard deviations (PSD), effective sample sizes
(ESS) and R̂ for sub-area level models for 2014 IL corn

Convergence diagnostics are conducted. The convergence is monitored using trace
plots, the multiple potential scale reduction factors (R̂ ≤ 1.05) and the Geweke test of
stationarity for each chain (Gelman and Rubin, 1992 and Geweke, 1992). Also, once the
simulated chains have mixed, the effective number of independent simulation draws to
monitor simulation accuracy is determined. Effective sample sizes and the R̂ are shown
in Tables 1-4, resulting in good convergence for all four models for both IL and OH. The
values of R̂ of most coefficient parameters are close to 1 and all of them are less than 1.05.
The effective sample sizes of coefficient parameters in sub-area level models are 3000 and
those in area-level models are around 2000 for IL. The effective sample sizes vary from
1100 to 3000 for OH.

Model Parameters PM PSD ESS R̂

C Area
β0 -92856.5 53764.1 1500 1.010
β1 0.956 0.353 2000 1.002
σ2
µ 11430283 14932670 2100 1.008

NC Area
β0 -558.4 1472.2 1700 1.002
β1 0.882 0.023 1900 1.002
σ2
µ 15096344.3 14654002.4 2500 1.004

Table 2: Posterior means (PM), posterior standard deviations (PSD), effective sample sizes
(ESS) and R̂ for area level models for 2014 IL corn

Model Parameters PM PSD ESS R̂

C Sub Area

β0 -47706.4 25639.2 1800 1.006
β1 1.115 0.476 3000 1.002
σ2
µ 5329872.2 5464708.8 2000 1.007
σ2
ν 2.91E+09 2.83E+09 2300 1.003

NC Sub Area

β0 -16.213 648.264 2800 1.004
β1 0.945 0.025 1400 1.006
σ2
µ 484029.4 538539.2 1200 1.007
σ2
ν 1774398.9 3515856.6 1800 1.003

Table 3: Posterior means (PM), posterior standard deviations (PSD), effective sample sizes
(ESS) and R̂ for sub-area level models for 2014 OH corn
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Model Parameters PM PSD ESS R̂

C Area
β0 -41862.9 23357.1 2300 1.007
β1 1.075 0.419 1700 1.009
σ2
µ 3895790.9 4085072.1 1900 1.008

NC Area
β0 108.911 218.078 3000 1.001
β1 0.941 0.021 1100 1.017
σ2
µ 387476.8 431343.2 1200 1.007

Table 4: Posterior means (PM), posterior standard deviations (PSD), effective sample sizes
(ESS) and R̂ for area level models for 2014 OH corn

4.2 Internal Check

Several diagnostic tools are available to check the adequacy of all four models considered
in this paper. First, the fit of models to data are assessed using posterior predictive checks
(Rubin, 1984 , Meng, 1994). If the model fit is adequate to all observations θ̂, replicated
values θrep that generated data from the model would be similar to observations. We cal-
culate the Bayesian predictive p-value (BPP) to measure the adequacy of all models to the
data from Gelman et al. (2004). The Bayesian posterior predictive p-value (BPP) is defined
as

p = Pr
(
T (θrep,Ω) > T (θ̂,Ω)|θ̂

)
,

where T (θ,Ω) is selected as T (θ,Ω) =
∑m

i=1

∑ni
j=1

(θij−E(θij |θ̂))2
V ar(θij |Ω) and Ω are the nuisance

parameters in each model. The p-value is the probability of the sum of square residuals
based on replicated estimates larger than the one from observed data. If the value is extreme
(close to 0 or 1), it indicates a discrepancy between the model and the data, meaning the
model is not adequate. The BPP for each model is presented in Table 5. For IL, the BPPs
in area level and sub-area level models with constraints are 0.663 and 0.504, respectively,
which are close to 0.5. The models without constraints have high BPP, 0.903 and 0.947,
respectively, but they are not extremely close to 1 (e.g. close to 0.99). Similar results show
for OH in Table 5. These BPPs did not raise the concerns on all four models based on data
for IL and OH.

Another goodness-of-fit measure for all four models is the deviance information crite-
rion (DIC) (Spiegelhalter et al., 2002) shown in Table 5. The DICs from sub-area models
are slightly smaller than those in area-level constrained models. The DICs of unconstrained
models are smaller than those in constrained models. Usually the model with the smallest
DIC is selected to be the model that would best predict a replicate dataset that has the same
structure as that currently observed. The sub-area level models are better than the area level
models.

Based on the DICs, the unconstrained models tend to produce predictions close to the
observed data. The constrained models produce replicate datasets based on the constraints,
and they are not necessarily similar to the observed values. However, it is not quite suit-
able to make the model selection only based on DICs in this case between constrained
and unconstrained models. Note that the scope of this paper is to generate county-level
model estimates that satisfy all required constraints rather than making predictions based
on observed data and administrative data. Figures 2 and 4 show the scatter plots between
observed data and administrative data. The observed data are not necessarily above the cor-
responding administrative data. The inequality constraints are introduced into the models,
and they produce more “biased” model-based estimates of the observed data when com-
pared to the models without inequality constraints. The bias correction terms in DIC tend
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to be larger. Therefore, it is hard to make a decision based on BPP and DIC diagnostics be-
tween sub-area level constrained and unconstrained models. To check model performance
between sub-area level constrained and unconstrained models, external comparisons are
shown in the next section.

Type Model DIC BPP
C NC C NC

IL Sub-area 2334.6 2285.3 0.504 0.947
Area 2335.7 2285.2 0.633 0.903

OH Sub-area 1881.1 1766.7 0.331 0.967
Area 1884.7 1776.4 0.248 0.908

Table 5: DICs and BPPs for constrained and unconstrained models

4.3 External Check

Internal checks show that all sub-area level models provide adequate fit to the data and sub-
area level models have slightly smaller DICs. However, none of the internal checks consid-
ered reveal much in terms of the model performance of both sub-area level constrained and
unconstrained models. In this section, the inequality constraints check is conducted and the
estimates for each model is compared with the published estimates.

First, the inequality check between the final model estimates number of planted acres
and the corresponding FSA and RMA administrative data is conducted for each model. See
Figures 5 and 6. Counties in light color indicate that the corresponding model estimates
are smaller than FSA and RMA data. Counties in dark color mean that their estimates are
larger than the maximum of both FSA and RMA administrative data. The right maps in
both Figures 5 and 6 show the results of constrained model, indicating that all counties in
both states cover the administrative data after ratio benchmarking.

Figure 5: Inequality check for unconstrained and constrained models for IL

Approximately 75% of the unconstrained model estimates covered the floor imposed
by administrative data. Some counties lost more than 1,000 planted acres. (Note that there
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are 640 acres to the square mile.) For OH, approximately 91% of the unconstrained model
estimates cover the administrative acreage data. Therefore, for the model without inequality
constraints, the coverage rate on administrative data depends on the relationship between
survey estimates and the administrative data. Those models cannot promise to produce
model-based (ME) estimates that cover all administrative data.

Figure 6: Inequality check for unconstrained and constrained models for OH

In addition, unconstrained model (NC) estimates, constrained model (C) estimates and
the survey (DE) estimates are compared with the published estimates. The absolute relative
differences between different estimates and published estimates,

ARD =
|θMERB − Published|

Published
,

are calculated and presented, where θMERB is denoted as the final model estimates after
ratio benchmarking. A small ARD is one key check on the performance of model-based
point estimates.

The posterior coefficients of variation (CV),

CV =
PSD

θMERB
,

are calculated, where PSD is the corresponding posterior standard deviation of θMERB

from different models (see Table 6 and Table 7).
The number of responses for number of planted acres in CAPS varies with county

in each state. Many counties in IL and OH have relatively large number of responses.
However, many counties have only few responses. Small area models tend to improve the
accuracy of estimates comparing to the accuracy of survey estimates, especially in areas
with small sample sizes. In order to examine the effect of sample size among our models,
we split counties of IL and OH, respectively, into three groups according to their number of
reports in CAPS: small sizes (less than 30); median sizes (between 30 and 60); large sizes
(larger than 60). We showed all statistics in Table 6 and Table 7 as well.

Among all counties in IL, the median ARD value between survey estimates and pub-
lished estimates in IL is 12.942%. Substantial improvement can be noticed from both the
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constrained model and the unconstrained model. Again compared to published estimates,
the median ARD value based on the constrained model is 0.194%, less than the median
ARD value based on the unconstrained model, 0.948%. Moreover, the range of ARD values
from the constrained model (0.003%, 34.908%) are much narrower than the range based on
survey estimates (0.259%, 82.973%) and also less than those from the unconstrained model
(0.007%, 51.349%). Therefore, for IL, the sub-area level model with constraints performs
best among the unconstrained model and survey estimates as measured by the ARD. In
addition, Table 6 shows the ARD values based on the sample sizes of counties in IL. The
ranges of ARD values based on both models are large for counties with small number of
reports. ARD values from the constrained model are within 2% for median size counties
but those from the unconstrained model are from 0.007% to 17.036 %. For large counties,
the relative differences from all models are the narrowest among all three types of counties.
They are within 2% difference for constrained models and 3% from unconstrained model.
As is to be expected, all estimates are closer to the published estimates with increasing
sample size. Overall, the comparisons of ARD values show that the constrained model
increases the accuracy of the estimates significantly.

The CVs of the IL modeled and survey estimates are shown in Table 6. The sub-area
level model can borrow information both from covariates and from other counties within
the district (sub-area) level. Therefore, the posterior CVs would have a greater reduction
compared with the CVs of the survey estimates. The median CVs among all counties in IL
are in decreasing order: survey, the unconstrained model and the constrained model. In the
unconstrained model, the CVs of small size counties are the largest (20.544%, 125.905%).
The maximum estimated CVs exceeds that in survey estimates. The CVs of the constrained
model are much smaller than those from survey and the unconstrained model. As expected,
the CVs are smaller when sample sizes increase. In the model with inequality constraints,
the maximum CVs is in the small size counties as well.

Sample size Statistics ARD (%) CV (%)
DE NC C DE NC C

Overall Min 0.259 0.007 0.003 10.501 1.899 0.144
Median 14.914 0.948 0.194 19.210 5.199 0.272

Max 82.973 51.346 34.908 92.283 125.905 12.705
[0,30) Min 0.259 0.622 0.273 25.315 20.544 1.466

Median 16.585 13.530 0.978 42.421 34.905 2.187
Max 66.174 51.346 34.908 92.283 125.905 12.705

[30,60) Min 0.575 0.007 0.007 10.501 2.459 0.185
Median 9.721 1.204 0.176 19.885 5.812 0.278

Max 39.620 17.036 1.940 33.961 21.985 2.336
≥ 60 Min 7.474 0.096 0.003 9.108 1.899 0.144

Median 33.990 0.646 0.196 15.731 3.151 0.214
Max 82.973 2.032 1.199 53.570 5.522 1.740

Table 6: 2014 IL corn planted acres: comparisons of ARDs and CVs among survey, sub-
area unconstrained model and constrained model

Table 7 shows all the comparisons for OH. The median of ARDs between survey es-
timates and published estimates is 12.942%. Substantial improvement can also be noticed
from both constrained and unconstrained models. The median ARD value between model-
based estimates and the published estimates is around 2%. The smallest median of the
relative differences is 2.394% in the unconstrained model. However, the range of ARD
values from the constrained model is (0.093%, 49.858%), which is narrower than the one
from the unconstrained model, (0.103%, 95.376%). Notice that the ranges of ARDs in OH
are larger than those in IL. The administrative data for OH are not stronger comparing with
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those in IL. In several counties, FSA and RMA administrative data have the undercoverage
issue.

To examine the effect of sample size, OH is split into three groups and all statistics
are presented in Table 7. The ranges of the ARD values based on models and the survey
are relatively large in small size counties. Both model estimates are much closer to the
published estimates. The model estimates based on the constrained model in small size
counties are closest to the published estimates based on the range of the ASD values. How-
ever, the median ARD value from the constrained model is 1.241 % for large size counties,
which is larger than the one from the unconstrained model, 0.876%. The maximum ASD
value is similar as well. In the median size counties, constrained model tends to provide
larger estimates compared with those from unconstrained model. If there was no inequal-
ity constraint, the model estimates would be affected by the undercoverage issue from the
administrative data when borrowing information from them.

The CVs are compared among models and the survey estimates for OH as well. Similar
to IL, the posterior CVs based on the models have large reductions comparing with the CVs
from survey. The median CV in the unconstrained model is 3.67%, larger than the one in
the constrained model. The maximum CV in the unconstrained model is the highest among
models and survey. As expected, the CVs are smaller when sample sizes increase. The
maximum of CVs is in small size counties as well. The CVs based on constrained model
are much smaller than those of constrained model and survey. For OH, the range of CVs in
model with inequality constraints are wider than those for IL.

Sample size Statistics ARD (%) CV (%)
DE NC C DE NC C

Overall Min 0.002 0.103 0.093 8.754 1.043 0.473
Median 12.942 2.394 2.575 22.292 3.670 0.797

Max 114.123 95.376 49.858 100.000 104.411 89.816
[0,30) Min 0.002 0.103 0.671 17.169 3.266 0.533

Median 24.898 9.791 4.650 35.280 22.292 5.044
Max 95.687 95.376 49.858 100.000 104.411 89.816

[30,60) Min 1.574 0.136 0.093 10.224 1.206 0.473
Median 12.699 2.266 2.191 19.468 2.546 0.660

Max 114.123 10.968 14.864 33.072 29.994 10.548
≥ 60 Min 6.172 0.322 0.216 8.755 1.043 0.499

Median 11.982 0.876 1.241 14.699 1.507 0.765
Max 18.915 5.001 6.785 19.384 5.231 4.136

Table 7: 2014 OH corn planted acres: comparisons of ARDs and CVs among survey,
sub-area unconstrained model and constrained model

5. Conclusion

NASS puts extensive research efforts on crops county estimate program aimed primarily
to improve the precision of the estimates at county level while preserving the underlying
relationships among the estimates and administrative data. Different small area estimation
models are implemented to integrate multiple sources of auxiliary information with CAPS
data. In this paper, models with inequality constraints are discussed and implemented to
address the needs and challenges of the inequality and benchmarking constraints that NASS
official statistics need to satisfy. That is, the county-level estimates of planted acreage
should “cover” the corresponding administrative data while the total acreage of all available
county-level estimates are equal to the state target.
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We apply both sub-area and area-level models with inequality constraint to construct
reliable and coherent county-level planted acreage estimates. In the case study of 2014
corn based on IL and OH, we show model diagnostics and provide internal checks among
all four models. The internal checks show the sub-area level models are slightly better
than area-level model. However, the residual-type internal checks are not very suitable for
comparing the constrained and unconstrained model since our focus is to provide coherent
estimates close to the official estimates but not to the observed data.

Now more comparisons among both sub-area level model estimates and survey esti-
mates are made. First, the inequality checks show that constrained model can preserve
the relationships among estimates and administrative data. But this is not necessarily the
case for the unconstrained model. In addition, the statistics of ARD values show that the
constrained model provides estimates closer to the published values than those from the
unconstrained model as well as those from the survey, especially for IL. FSA and RMA
are very significant covariates for the estimates of planted acres. Moreover, the associated
measures of uncertainty (CVs) from models are significantly smaller than the CVs of the
survey estimates. The basic sub-area models can reduce the CVs while borrowing strength
from auxiliary information and all counties within one district and all districts within one
state. In addition, for the constrained model, the prior information based on the lower
bound information from FSA and RMA data and the upper bound related to the state tar-
get reduce the CVs of the model-based estimates since estimates can be drawn only in the
restricted support. Therefore, the performance of the sub-area level model with inequality
constraints illustrates significant improvement of county-level estimates of planted acres in
accuracy and precision.

Major ongoing and future research related to sub-area level constrained model involves
the investigation of different auxiliary information. The auxiliary information considered
here is the key data sources of planted acres (the combination of FSA and RMA admin-
istrative data). Future efforts will be on searching and applying other useful data sources
to strengthen the model. Remote sensing data, NASS cropland data layer (CDL), and
weekly weather data are available at the county level. Variable selections should be in-
vestigated for different states and commodities because weather conditions influence the
planting progress and the planted acres within different time periods based on different
states and commodities.

In addition, missing data problems are another challenge for the application of the
constrained model. In this paper, two case studies related to corn-belt states, IL and OH,
which do not have missing data in 2014 corn, are provided. However, it is not always the
case for other states or other commodities. As mentioned in Section 2.1, CAPS is conducted
for different commodities among all eligible states. In some cases, the survey may not
indicate any planted area with respect to a particular commodity, but administrative data
might represent some positive acres or vise versa. Erciulescu, Nathan and Nandram (2020)
uses the nearest neighbor methods to impute missing data for either survey or covariates.
This approach and imputing and borrowing information from previous year or the average
of several years estimates are being explored. How to deal with missing data and provide
reliable and coherent predictions are ongoing research.
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